Genetic variations of the bicarbonate secreting anion exchanger SLC26A6 are not associated with chronic pancreatitis

Anita Balázs¹, Claudia Ruffert², Eszter Hegyi³, Istvan Hritz¹, Tamas Takacs¹, Zoltan Szepes¹, Laszlo Czako¹, Balazs Nemeth⁴, Judit Gervain⁵, Ferenc Izbéki⁵, Adrienn Halasz⁵, Dezso Kelemen⁶, Richard Szmola⁷, Janos Novak⁸, Stefan Crai⁸, Anita Illes⁹, Aron Vincze⁹, Zsolt Molnar¹⁰, Marta Varga¹¹, Barnabas Bod¹², Gyula Farkas Jr. ¹³, Janos Sumegi¹⁴, Attila Szepes¹⁵, Zsolt Dubravcsik¹⁵, Natalia Lasztity¹⁶, Andrea Párniczky¹⁶, Jozsef Hamvas¹⁷, Csilla Andorka¹⁸, Gábor Veres¹⁸, Zsolt Szentkereszty¹⁹, Zoltán Rakonczay Jr. ¹, József Maléth¹, Miklós Sahin-Tóth⁴, Jonas Rosendahl², Péter Hegyi^{1, 20} on behalf of the Hungarian Pancreatic Study Group

¹First Department of Medicine, University of Szeged, Szeged, Hungary, ²Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Germany, ³2nd Department of Pediatrics, Comenius University Medical School, University Children's Hospital, Bratislava, Slovakia, ⁴Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02, United States, ⁵Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary, ⁶Department of Surgery, University of Pécs, Hungary, ⁷Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary, ⁸Pándy Kálmán County Hopsital, Gyula, Hungary, ⁹First Department of Medicine, University of Pécs, Hungary, ¹⁰Department of Anestesiology and Intensive Care, University of Szeged, Szeged, Hungary, ¹¹Dr. Réthy Pál Hospital, Békéscsaba, Hungary, ¹²Dr. Bugyi István Hospital, Szentes, Hungary, ¹³Department of Surgery, University of Szeged, Hungary, ¹⁴B-A-Z County Hopspital and University Teaching Hospital, Miskolc, Hungary, ¹⁵Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary, ¹⁶Heim Pál Children's Hospital, Budapest, Hungary, ¹⁷Bajcsy-Zsilinszky Hospital, Budapest, Hungary, ¹⁸Ist Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary, ¹⁹Institute of Surgery, University of Debrecen, Clinical Center, Debrecen Hungary, ²⁰MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary

Introduction: Pancreatic ductal HCO₃ secretion is critically dependent on the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 26 member 6 anion transporter (SLC26A6). Deterioration of HCO₃ secretion is observed in chronic pancreatitis (CP), and *CFTR* mutations increase CP risk.

Aims: Therefore, *SLC26A6* is a reasonable candidate for a CP susceptibility gene, which has not been investigated in CP patients so far.

Patients & methods: As a discovery cohort, 96 subjects with CP and 99 control subjects with no pancreatic disease were recruited from the Hungarian National Pancreas Registry. In 30 non-alcoholic CP cases the entire *SLC26A6* coding region was sequenced. Variants c.616G>A (p.V206M) and c.1191C>A (p.P397=) were further genotyped by restriction fragment length polymorphism analysis. A German replication cohort of 321 CP cases and 171 controls was analyzed by sequencing.

Results: Sequencing of the *SLC26A6* coding region revealed four common variants: intronic variants c.23+71_103del, c.183-4C>A, c.1134+32C>A, and missense variant c.616G>A (p.V206M) which were found in linkage disequilibrium indicating a conserved haplotype. The distribution of the haplotype did not show a significant difference between patients and controls in the two cohorts. A synonymous variant c.1191C>A (p.P397=) was detected in a single case.

Conclusion: Our data show that *SLC26A6* variants do not alter the risk for the development of CP.