Genetic variations of the bicarbonate secreting anion exchanger SLC26A6 are not associated with chronic pancreatitis

Anita Balázs ${ }^{1}$, Claudia Ruffert ${ }^{2}$, Eszter Hegyi 3, Istvan Hritz ${ }^{1}$, Tamas Takacs ${ }^{1}$, Zoltan Szepes ${ }^{1}$, Laszlo Czako ${ }^{1}$, Balazs Nemeth ${ }^{4}$, Judit Gervain ${ }^{5}$, Ferenc Izbéki ${ }^{5}$, Adrienn Halasz ${ }^{5}$, Dezso Kelemen ${ }^{6}$, Richard Szmola ${ }^{7}$, Janos Novak ${ }^{8}$, Stefan Crai ${ }^{8}$, Anita Illes ${ }^{9}$, Aron Vincze ${ }^{9}$, Zsolt Molnar ${ }^{10}$, Marta Varga ${ }^{11}$, Barnabas Bod ${ }^{12}$, Gyula Farkas Jr. ${ }^{13}$, Janos Sumegi ${ }^{14}$, Attila Szepes ${ }^{15}$, Zsolt Dubravcsik ${ }^{15}$, Natalia Lasztity ${ }^{16}$, Andrea Párniczky ${ }^{16}$, Jozsef Hamvas ${ }^{17}$, Csilla Andorka ${ }^{18}$, Gábor Veres ${ }^{18}$, Zsolt Szentkereszty ${ }^{19}$, Zoltán Rakonczay Jr. ${ }^{1}$, József Maléth ${ }^{1}$, Miklós Sahin-Tóth ${ }^{4}$, Jonas Rosendahl ${ }^{2}$, Péter Hegyi ${ }^{1,20}$ on behalf of the Hungarian Pancreatic Study Group
${ }^{1}$ First Department of Medicine, University of Szeged, Szeged, Hungary, ${ }^{2}$ Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Germany, ${ }^{3} 2 n d$ Department of Pediatrics, Comenius University Medical School, University Children's Hospital, Bratislava, Slovakia, ${ }^{4}$ Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02, United States, ${ }^{5}$ Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary, ${ }^{6}$ Department of Surgery, University of Pécs, Hungary, ${ }^{7}$ Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary, ${ }^{8}$ Pándy Kálmán County Hopsital, Gyula, Hungary, ${ }^{9}$ First Department of Medicine, University of Pécs, Hungary, ${ }^{10}$ Department of Anestesiology and Intensive Care, University of Szeged, Szeged, Hungary, ${ }^{11}$ Dr. Réthy Pál Hospital, Békéscsaba, Hungary, ${ }^{12}$ Dr. Bugyi István Hospital, Szentes, Hungary, ${ }^{13}$ Department of Surgery, University of Szeged, Hungary, ${ }^{14} B-A-Z$ County Hopspital and University Teaching Hospital, Miskolc, Hungary, ${ }^{15}$ Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary, ${ }^{16}$ Heim Pál Children's Hospital, Budapest, Hungary, ${ }^{17}$ Bajcsy-Zsilinszky Hospital, Budapest, Hungary, ${ }^{18} 1$ st Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary, ${ }^{19}$ Institute of Surgery, University of Debrecen, Clinical Center, Debrecen Hungary, ${ }^{20}$ MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary

Introduction: Pancreatic ductal $\mathrm{HCO}_{3}{ }^{-}$secretion is critically dependent on the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 26 member 6 anion transporter (SLC26A6). Deterioration of HCO_{3}^{-}secretion is observed in chronic pancreatitis (CP), and CFTR mutations increase CP risk.

Aims: Therefore, SLC26A6 is a reasonable candidate for a CP susceptibility gene, which has not been investigated in CP patients so far.

Patients \& methods: As a discovery cohort, 96 subjects with CP and 99 control subjects with no pancreatic disease were recruited from the Hungarian National Pancreas Registry. In 30 non-alcoholic CP cases the entire SLC26A6 coding region was sequenced. Variants c.616G>A (p.V206M) and c.1191C>A (p.P397=) were further genotyped by restriction fragment length polymorphism analysis. A German replication cohort of 321 CP cases and 171 controls was analyzed by sequencing.

Results: Sequencing of the SLC26A6 coding region revealed four common variants: intronic variants $\mathrm{c} .23+71 _103 \mathrm{del}, \mathrm{c} .183-4 \mathrm{C}>\mathrm{A}, \mathrm{c} .1134+32 \mathrm{C}>\mathrm{A}$, and missense variant $\mathrm{c} .616 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{V} 206 \mathrm{M})$ which were found in linkage disequilibrium indicating a conserved haplotype. The distribution of the haplotype did not show a significant difference between patients and controls in the two cohorts. A synonymous variant $\mathrm{c} .1191 \mathrm{C}>\mathrm{A}$ (p.P397=) was detected in a single case.

Conclusion: Our data show that SLC26A6 variants do not alter the risk for the development of CP.

